
162 Chapter 4 Threads

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is similar
to the Pthreads technique in several ways. We illustrate the Win32 thread
API in the C program shown in Figure 4.10. Notice that we must include the
windows.h header file when using the Win32 API.

Just as in the Pthreads version shown in Figure 4.9, data shared by the
separate threads—in this case, Sum—are declared globally (the DWORD data
type is an unsigned 32-bit integer). We also define the Summation() function
that is to be performed in a separate thread. This function is passed a pointer to
a void, which Win32 defines as LPVOID. The thread performing this function
sets the global data Sum to the value of the summation from 0 to the parameter
passed to Summation().

Threads are created in the Win32 API using the CreateThread() function,
and—just as in Pthreads—a set of attributes for the thread is passed to this
function. These attributes include security information, the size of the stack,
and a flag that can be set to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it eligible
to be run by the CPU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sum, since
the value is set by the summation thread. Recall that the Pthread program
(Figure 4.9) has the parent thread wait for the summation thread using the
pthread join() statement. We perform the equivalent of this in the Win32 API
using the WaitForSingleObject() function, which causes the creating thread
to block until the summation thread has exited. (We cover synchronization
objects in more detail in Chapter 6.)

4.4 Java Threads

Threads are the fundamental model of program execution in a Java program,
and the Java language and its API provide a rich set of features for the creation
and management of threads. All Java programs comprise at least a single thread
of control that begins execution in the program’s main() method.

4.4.1 Creating Java Threads

There are two techniques for creating threads in a Java program. One approach
is to create a new class that is derived from the Thread class and to override
its run() method. However, the most common technique is to define a class
that implements the Runnable interface. The Runnable interface is defined as
follows:

public interface Runnable
{

public abstract void run();
}

When a class implements Runnable, it must define a run() method. The code
implementing the run() method is what runs as a separate thread.



164 Chapter 4 Threads

Figure 4.11 shows the Java version of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating
an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not specifically create the new thread; rather,
it is the start() method that actually creates the new thread. Calling the
start() method for the new object does two things:

1. It allocates memory and initializes a new thread in the JVM.

2. It calls the run() method, making the thread eligible to be run by the
JVM. (Note that we never call the run() method directly. Rather, we call
the start() method, and it calls the run() method on our behalf.)

When the summation program runs, two threads are created by the JVM.
The first is the parent thread, which starts execution in the main() method.
The second thread is created when the start() method on the Thread object
is invoked. This child thread begins execution in the run() method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run() method.

Sharing of data between threads occurs easily in Win32 and Pthreads, as
shared data are simply declared globally. As a pure object-oriented language,
Java has no such notion of global data; if two or more threads are to share
data in a Java program, the sharing occurs by passing references to the
shared object to the appropriate threads. In the Java program shown in Figure
4.11, the main thread and the summation thread share the object instance
of the Sum class. This shared object is referenced through the appropriate
getSum() and setSum() methods. (You might wonder why we don’t use a
java.lang.Integer object rather than designing a new Sum class. The reason
is that the java.lang.Integer class is immutable—that is, once its integer
value is set, it cannot change.)

Recall that the parent threads in the Pthreads and Win32 libraries use
pthread join() and WaitForSingleObject() (respectively) to wait for
the summation threads to finish before proceeding. The join() method
in Java provides similar functionality. Notice that join() can throw an
InterruptedException, which we choose to ignore for now. We discuss
handling this exception in Chapter 6.

Java actually identifies two different types of threads: (1) daemon (pro-
nounced “demon”) and (2) non-daemon threads. The fundamental difference
between the two types is the simple rule that the JVM shuts down when all
non-daemon threads have exited. Otherwise, the two thread types are iden-
tical. When the JVM starts up, it creates several internal daemon threads for
performing tasks such as garbage collection. A daemon thread is created by
invoking the setDaemon()method of the Thread class and passing the method
the value true. For example, we could have set the thread in the program
shown in Figure 4.11 as a daemon by adding the following line after creating
—but before starting—the thread:

thrd.setDaemon(true);



4.4 Java Threads 165

class Sum
{

private int sum;

public int getSum() {
return sum;

}

public void setSum(int sum) {
this.sum = sum;

}
}

class Summation implements Runnable
{

private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)

sum += i;
sumValue.setSum(sum);

}
}

public class Driver
{

public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parseInt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");

else {
// create the object to be shared
Sum sumObject = new Sum();
int upper = Integer.parseInt(args[0]);
Thread thrd = new Thread(new Summation(upper, sumObject));
thrd.start();
try {

thrd.join();
System.out.println

("The sum of "+upper+" is "+sumObject.getSum());
} catch (InterruptedException ie) { }
}

}
else
System.err.println("Usage: Summation <integer value>"); }

}

Figure 4.11 Java program for the summation of a non-negative integer.


	Operating System Concepts 8e wa By Silberschatz Galvin Gagne 184
	Operating System Concepts 8e wa By Silberschatz Galvin Gagne 186
	Operating System Concepts 8e wa By Silberschatz Galvin Gagne 187

