
Lab Assignment – Terminal

CS380

In this lab you will get an introduction to the
Terminal command line interface provided in
Ubuntu. This is called a shell.

This week you will have a general introduction of
this topic. Next week you will look at more details
and complete an assignment on the topic.

Lets get started!

Shell

Command-line interface provided by Unix and Mac OS X is called a shell a shell:

 - prompts user for commands

 - interprets user commands

 - passes them onto the rest of the operating system which is hidden from the user

How do you access a shell ?

- if you have an account on a machine running Unix or Linux , just log in.

A default shell will be running.

- if you are using a Mac or Ubuntu, run the Terminal app.

A default shell will be running.

Examples of Operating Systems
 Unix MS Windows

 AT&T System V Unix Berkeley Unix Windows 95
 Windows 98
 Windows XP
 GNU Linux Mac OS X Windows 7
 Windows 8

- Even though there are differences between the various Unix operating systems, for the
 most part, we are going to ignore those differences, and just refer to “Unix” operating
 systems because the principles are largely the same.

- There are also many different Unix shells that are more alike than different:

- sh (original Unix shell, by Stephen Bourne) /bin/sh
- ksh (similar to sh, by David Korn) /bin/ksh
- bash (Bourne again shell, part of GNU project) /bin/bash
- csh (part of Berkely Unix, intended to by C-like, by Bill Joy) /bin/csh
- tcsh (based on and compatible with csh) /bin/tcsh

7

echo $SHELL

CNGL
Typewritten Text

CNGL
Typewritten Text
(type this command to see what shell is on your computer)

Unix Philosophy

- provide small programs that do one thing well
 and
 provide mechanisms for joining programs together

 - “silence is golden”
 when a program has nothing to say, it shouldn’t say anything

- users are very intelligent and do what they intend to do

8

Introduction to Terminal use

See this tutorial for an introduction to using Terminal:

https://www.youtube.com/watch?v=IVquJh3DXUA

The following pages will help you gain a deeper understanding of
Terminal use. You should try out operations in Terminal & consult
the web for further details as required.

https://www.youtube.com/watch?v=IVquJh3DXUA
https://www.youtube.com/watch?v=IVquJh3DXUA

Examples of Tasks for Command-Line Interface

data management:
 - two types of administrative data – millions of observations of each type
 - need to standardize addresses for merging (or fuzzy matching)

file management
 - check number of lines in large file downloaded from the web

file management:
 - split huge files into subsets that are small enough to be read into memory

basic web scraping
 - list of names and dates of OPR computing workshops

basic web scraping
 - list of UN countries and dates they became members

9

Command Execution Cycle and Command Format
1. Shell prompts user
2. User inputs or recalls command ending with <CR>
3. Shell executes command

$ date

$ who

$ who -q

$ cal 2014

$ cal 8 2014

$ pwd

$ ls

$ mkdir unix

$ cd unix

$ pwd

$ls

$ command [options] [arguments]

command
 - first word on line
 - name of program

options
 - usually begin with -
 - modify command behavior

arguments
 - “object” to be “acted on” by command
 - often directory name, file name, or character string

use man command for options & arguments of each command

use PS1=“$ “ to change prompt string

13

CNGL
Typewritten Text
(try typing this command to change the prompt string on your PC!)

Using Command History

commands are saved and are available to recall

to re-execute a previously entered command:

 step 1. press to scroll through previously entered commands
 step 2. press <CR> to execute a recalled command

 OR

to re-execute a previously entered command:
 $ history
 $!<command number>

14

Files

• Displaying File Contents

• File Management Commands

• File Access and Permission

• Redirecting Standard Output to a File

• File Name Generation Characters

15

Files

file names:
 should not contain spaces or slashes
 should not start with + or –
 best to avoid special characters other than _ and .
 files with names that start with . will not appear in output of ls

command

created by:
- copying an existing file
- using output redirection
- executing some Unix program or other application
- using a text editor
- downloading from the internet

CNGL
Typewritten Text
(try out the commands on the following slides; further details can be searched for on web if required)

Displaying File Contents
$ wc wdata

$ cat wdata

$ head wdata

$ head -1 wdata

$ tail wdata

$ tail -2 wdata

$ more wdata

17

CNGL
Typewritten Text
(These commands assume you have a file called wdata saved in your working directory)

CNGL
Typewritten Text
You should create a file called wdata using a text editor & put some sample content in it

File Commands

$ cp wdata wdata.old

$ mv wdata.old wdata.save

$ cp wdata wdata_orig

$ cp wdata wdata_fromweb

$ rm wdata_orig wdata_fromweb

$ diff wdata wdata.save

18

CNGL
Typewritten Text
(These commands also assume you have a file called wdata saved in your working directory)

Redirecting Standard Output
most commands display output on terminal screen

$ date

command output can be redirected to a file

$ date > date.save

$ cat date.save

*** note: output redirection using > overwrites file contents if file already exists

$ date > date.save

$ cat date.save

use >> to append output to any existing file contents (rather than overwrite file)

$ date >> date.save

$ cat date.save

20

File Name Generation Characters
shell can automatically put file names

on a command line if user uses

file name generation characters

 ? any single character $ cat s?

 * any number of any characters $ ls b*

 (including 0)

 $ ls *.R

 $ wc -l *.do

 $ ls *.dta

 $ ls check_*.do

[...] any one of a group of characters $ rm s[4-7]

21

CNGL
Typewritten Text
(below shows examples. Try some of these out considering the files you have in your working directory,e.g. your date.save file. What happens if you try thecommand 'ls d*' for example?)

Directories

• Directory Tree

• Pathnames: Absolute and Relative

• Copying, Moving and Removing Files & Directories

22

Directory Tree

 /

 bin etc usr u tmp dev

 who date passwd bin lbin dkoffman awest

 diff curl emacs unix

 date.save wdata wdata.save

pwd shows you where you are (present working directory)

cd makes your “home” (login) directory your current directory
 23

Changing Directory
absolute pathnames relative pathnames

 $ pwd $ pwd

 $ cd /etc $ cd ../../../etc

 $ cat passwd $ cat passwd

 $ cd /bin $ cd ../bin

 $ ls e* $ ls e*

 $ ls f* $ ls f*

 $ cd /usr/bin $ cd ../usr/bin

$ ls e* $ ls e*

$ ls f* $ ls f*

$ cd /u/dkoffman $ cd

$ cd /u/dkoffman/unix $ cd unix

 .. refers to the parent directory

24

Accessing Files
 absolute pathnames relative pathnames

 $ pwd $ pwd

 $ cat /etc/passwd $ cat ../../../etc/passwd

 $ ls /bin/e* $ ls ../../../bin/e*

 $ ls /bin/f* $ ls ../../../bin/f*

 $ ls /usr/bin/e* $ ls ../../../usr/bin/e*

 $ ls f* $ ls ../../../usr/bin/f*

 $ pwd $ pwd

 .. refers to the parent directory

25

Copying Files
 $ cp date.save date.save2

 $ mkdir savedir dkoffman

 $ cp *.save* savedir

 list of files

 $ cd savedir

 $ ls

 $ cp date.save2 date.save3

 $ cp date.save3 ..

 $ ls ..

 $ cp date.save2 date.save4

 $ cd ..

 $ cp savedir/date.save4 .

 . refers to the current directory

 26

 unix

date.save date.save2 date.save3 date.save4 savedir

 wdata wdata.save

 date.save

 date.save2

 date.save3

 date.save4

 wdata.save

Moving Files
 $ cp date.save date4move dkoffman

 $ mv date4move date.4move

 $ ls

 $ mkdir movedir

 $ mv date.4move movedir

 $ ls

 $ ls movedir

 $ mv date.save[23] movedir

 list of files

 $ ls

 $ cd movedir

 $ ls

 $ mv ../date.save .

 $ ls

 $ cd ..

27

 unix

 savedir date.save4 wdata wdata.save movedir

 date.4move

 date.save

 date.save2

 date.save3

Removing Files and Directories
 $ cd

 $ cd unix

 $ rm date.save4 wdata.save

 $ rmdir movedir

 rmdir: failed to remove ‘movedir’:

 Directory not empty

 $ ls movedir

 $ rm movedir/* # BE CAREFUL!

 $ rmdir movedir

 $ rm savedir/date*

 $ ls savedir

 $ ls

28

 dkoffman

 unix

 savedir wdata

 wdata.save

Commands

• Review of Commands

• More Commands

• Sequential Execution

• Command Grouping

• Pipelines

• Foreground/Background Command Execution

29

CNGL
Typewritten Text

CNGL
Sticky Note
Accepted set by CNGL

CNGL
Sticky Note
None set by CNGL

(This 'Commands' section is more complicated.More 'Commands' are provided here for those who would like to take a deeper look at command line use. Particularly recommended here are the last three pages of the document.)

Review of Commands

30

date

who

cal

pwd

ls

mkdir

cd

history

curl

wget

gunzip

cat

head

tail

more

cp

mv

rm

diff

chmod

rmdir

More Commands
$ tail -40 wdata

$ sort wdata

$ tail -40 wdata

$ sort wdata > wdata.sort

$ more wdata.sort

$ sort –r wdata > wdata.revsort

$ more wdata.revsort

$ wc wdata

$ wc –l wdata

$ wc –wc wdata

31

More Commands
$ head wdata

$ cut –d”,” –f1 wdata

$ head wdata

$ cut –d”,” –f1 wdata > wdata.countries

$ cut –c1,3-4 wdata

$ cut –d”,” –f5 wdata > wdata.le

$ paste wdata.le wdata.countries

$ sort wdata.le > wdata.le.sort

$ uniq wdata.le.sort

$ uniq –c wdata.le.sort

32

More Commands

$ grep “,Oceania,” wdata

$ grep “,Central America,” wdata > wdata.centralamerica

$ grep pop2012 wdata

$ grep pop2012 wdata > wdata.hd

$ grep –v pop2012 wdata > wdata.clean

$ head wdata.clean

$ wc –l wdata.clean

$ grep -n “,Oceania,” wdata.clean

$ grep –n –i “,oceania,” wdata.clean

33

Regular Expressions

34

 describe a sequence of characters (pattern) to be matched

 basics

 . (dot) matches any single character: 1.6

 [] (brackets) match any one of the enclosed characters: [aeiou]
 can use – (dash) to indicate at range of characters: [A-Za-z] [24-6]

 [^] match any character except the enclosed characters: [^Zz]

 * (asterisk) matches zero or more of the preceding character: b* vs bb*

 ^ (caret) pattern must occur at the beginning of a line (anchor): ^ABC

 $ (dollar sign) pattern must occur at the end of a line (anchor): ABC$ vs ^ABC$

 \ (backslash) turns off (escapes) the special meaning of the next character: \.*

 enclose regular expressions in single quotes to stop shell from expanding special characters

Using Regular Expressions
$ grep stan wdata.clean

$ grep ‘^B’ wdata.clean

$ grep ‘^....,’ wdata.clean

$ grep ‘/’ wdata.clean

$ grep –i ira[qn] wdata.clean

$ grep ‘^.*,.*West’ wdata.clean

$ grep ‘4.,[A-Z]’ wdata.clean

$ grep ‘[56].,[A-Z]’ wdata.clean

$ grep ‘[67].,[A-Z]..*Americas’ wdata.clean

 35

More Commands
$ split –l20 wdata.clean

$ ls

$ wc –l xa?

$ tail xah

$ cat xa? > wdata.clean.copy

$ wc –l wdata.clean.copy

$ tr “abcdefghijklmnopqrstuvwxyz” “ABCDEFGHIJKLMNOPQRSTUVWXYZ” < wdata

$ tr [:lower:] [:upper:] < wdata.clean > wdata.clean.uc

$ tr -d ‘:”’ < wdata.clean

$ tr –s “ ” < wdata.clean
36

Sequential Execution

cmd1 arg1 arg2 ...; cmd2 arg1 arg2 ...; cmd3 arg1 arg2 ...

- series of commands on a single line separated by semicolons

- commands are executed left-to-right, one at a time

$ sort wdata.clean > wdata.clean.s; echo SORT DONE

37

Command Grouping

(cmd1 arg1 agg2 ...; cmd2 arg1 arg2 ...; cmd3 arg1 arg2 ...)

- allows several commands to be treated as one with respect to standard output

$ date > log

$ who am i >> log

$ (

 > date

 > who am i

 >) > log

$

$ (date; who am i) > log

 38

Pipeline
 cmd1 arg1 ... | cmd2 arg1 ... | cmd3 arg1 ...

 - series of commands separated by |

 - output of one command used as input for next command

 - commands run in parallel when possible!

 - avoids use of temporary files ... faster!

 $ who | sort

 $ who > tempfile

 $ sort < tempfile

 $ rm tempfile

39

Pipeline Examples

40

 $ who | wc –l

 $ ls –l | grep “^d”

 $ grep Africa wdata.clean | sort

 $ sort wdata.le | uniq | wc –l

 $ grep Americas wdata.clean | cut –d”,” –f5 | sort

 $ grep Americas wdata.clean | cut –d”,” –f5 | sort | uniq

 $ grep Americas wdata.clean | cut –d”,” –f5 | sort | uniq | wc –l

 $ sort wdata.clean | tr [:lower:] [:upper:] | cut –d”,” –f1

 $ sort wdata.clean | cut –d”,” –f1,5

 $ sort wdata.clean | cut –d”,” –f1,5 | tr –d ‘”.:’ | split –l20 – wdata_le_part_

Writing to a File And to Standard Output

41

 tee command

 - reads from standard input

 - writes to a file and standard output

 - very useful for saving intermediate “results” in a pipeline

 - use –a option to append to a file rather than overwrite

 $ sort wdata.le | uniq | tee wdata.le.uniq | wc –l

 $ cat wdata.le.uniq

 $ sort wdata.le | uniq | tee wdata.le.uniq | wc –l > le.uniq.count

 $ cat le.uniq.count

 $ sort wdata.clean | cut –d”,” –f1,5 | tee c.le | split –l20 – wdata_le_part_

 $ cat c.le

