
132 Chapter 3 Processes

Connection
Port

Connection
request Handle

Handle

Handle

Client
Communication Port

Server
Communication Port

Shared
Section Object
(< = 256 bytes)

ServerClient

Figure 3.24 Local procedure calls in Windows XP.

three other strategies for communication in client–server systems: sockets,
remote procedure calls (RPCs), and Java’s remote method invocation (RMI).

3.6.1 Sockets

A socket is defined as an endpoint for communication. A pair of processes
communicating over a network employ a pair of sockets—one for each process.
A socket is identified by an IP address concatenated with a port number. In
general, sockets use a client–server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.
Servers implementing specific services (such as telnet, FTP, and HTTP) listen
to well-known ports (a telnet server listens to port 23; an FTP server listens to
port 21; and a Web, or HTTP, server listens to port 80). All ports below 1024 are
considered well known; we can use them to implement standard services.

When a client process initiates a request for a connection, it is assigned
a port by its host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a Web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
on the Web server. This situation is illustrated in Figure 3.25. The packets
traveling between the hosts are delivered to the appropriate process based on
the destination port number.

All connections must be unique. Therefore, if another process also on host
Xwished to establish another connection with the same Web server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

To explore socket programming further, we turn next to an illustration
using Java. Java provides an easy interface for socket programming and has a
rich library for additional networking utilities.

Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets
use theDatagramSocket class. Finally, theMulticastSocket class is a subclass

3.6 Communication in Client–Server Systems 133

socket
(146.86.5.20:1625)

host X
(146.86.5.20)

socket
(161.25.19.8:80)

web server
(161.25.19.8)

Figure 3.25 Communication using sockets.

of the DatagramSocket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP
sockets. The operation allows clients to request the current date and time from
the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a connection is received, the server
returns the date and time to the client.

The date server is shown in Figure 3.26. The server creates a ServerSocket
that specifies it will listen to port 6013. The server then begins listening to the
port with the accept() method. The server blocks on the accept() method
waiting for a client to request a connection. When a connection request is
received, accept() returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes aPrintWriterobject that it will use to communicate
with the client. A PrintWriter object allows the server to write to the socket
using the routine print() and println() methods for output. The server
process sends the date to the client, calling the method println(). Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the
Java program shown in Figure 3.27. The client creates a Socket and requests
a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read from the socket using normal stream
I/O statements. After it has received the date from the server, the client closes
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the
loopback. When a computer refers to IP address 127.0.0.1, it is referring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an IP address,
an actual host name, such as www.westminstercollege.edu, can be used as
well.

134 Chapter 3 Processes

import java.net.*;
import java.io.*;

public class DateServer
{

public static void main(String[] args) {
try {

ServerSocket sock = new ServerSocket(6013);

// now listen for connections
while (true) {

Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

// write the Date to the socket
pout.println(new java.util.Date().toString());

// close the socket and resume
// listening for connections
client.close();

}
}
catch (IOException ioe) {

System.err.println(ioe);
}

}
}

Figure 3.26 Date server.

Communication using sockets—although common and efficient—is gen-
erally considered a low-level form of communication between distributed
processes. One reason is that sockets allow only an unstructured stream of bytes
to be exchanged between the communicating threads. It is the responsibility
of the client or server application to impose a structure on the data. In the
next two subsections, we look at two higher-level methods of communication:
remote procedure calls (RPCs) and Java’s remote method invocation (RMI).

3.6.2 Remote Procedure Calls

One of the most common forms of remote service is the RPC paradigm, which
we discussed briefly in Section 3.5.1. The RPC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the IPC mechanism described in
Section 3.4, and it is usually built on top of such a system. Here, however,
because we are dealing with an environment in which the processes are
executing on separate systems, we must use a message-based communication
scheme to provide remote service. In contrast to the IPC facility, the messages

3.6 Communication in Client–Server Systems 135

import java.net.*;
import java.io.*;

public class DateClient
{

public static void main(String[] args) {
try {

//make connection to server socket
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new

BufferedReader(new InputStreamReader(in));

// read the date from the socket
String line;
while ((line = bin.readLine()) != null)

System.out.println(line);

// close the socket connection
sock.close();

}
catch (IOException ioe) {

System.err.println(ioe);
}

}
}

Figure 3.27 Date client.

exchanged in RPC communication are well structured and are thus no longer
just packets of data. Each message is addressed to an RPC daemon listening to
a port on the remote system, and each contains an identifier of the function
to execute and the parameters to pass to that function. The function is then
executed as requested, and any output is sent back to the requester in a separate
message.

A port is simply a number included at the start of a message packet. Whereas
a system normally has one network address, it can have many ports within
that address to differentiate the many network services it supports. If a remote
process needs a service, it addresses a message to the proper port. For instance,
if a system wished to allow other systems to be able to list its current users, it
would have a daemon supporting such an RPC attached to a port—say, port
3027. Any remote system could obtain the needed information (that is, the list
of current users) by sending an RPC message to port 3027 on the server; the
data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RPC system hides the details
that allow communication to take place by providing a stub on the client side.
Typically, a separate stub exists for each separate remote procedure. When the
client invokes a remote procedure, the RPC system calls the appropriate stub,

	Operating System Concepts 8e wa By Silberschatz Galvin Gagne 154
	Operating System Concepts 8e wa By Silberschatz Galvin Gagne 155
	Operating System Concepts 8e wa By Silberschatz Galvin Gagne 156

