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Abstract. This paper explains the basic principle of QUIC protocol,
located just above UDP, in its ways of standardization by the IETF.
QUIC is going to be the transport protocol used in HTTP/3, this pa-
per aims to describe how handshake and data transfer are orchestrated
while comparing them to TCP HTTP/2. This approach allows explain-
ing the need for QUIC and how it solves HTTP/2’s issues like the lack
of early data management, TCP’s head-of-line blocking or higher num-
ber of RTT. Then, it shows an overview of QUIC’s next implementations
with current research issues and a summary table of the comparison with
TCP.
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1 Introduction

The beginning of the 21st century has been marked with the use of the internet.
For communicating, we used in first telephonic lines that have been made only
for voice, and therefore haven’t been reliable for data. Transport protocols like
TCP [18] were created to assure that information will be delivered.

Many round trips are needed to verify that data are received correctly. Now,
the complexity of our usages makes the internet an expanding place. In times
where connections multiply on a very large scale, these connections must be
always faster; and protocol study is necessary to meet those requierements.

QUIC is a new transport protocol developed by many companies. It aims
to improve the internet efficiency. For instance, Google and IETF are the main
contributors in this project. Google has developed gQUIC, its own version of the
protocol and uses it for its own services. On the other hand, IETF’s goal is to
standardize the protocol to be used worldwide.

QUIC introduces HTTP/3 [1]. The goal is to solve problems related to
HTTP/2 linked to the use of TCP: like minimizing the latency of the hand-
shake, introducing early data and prevent TCP’s head-of-line blocking [12]. In
this document, we will discuss how IETF’s QUIC solves these issues while ex-
plaining how it works.

The rest of the paper is organized as follows. Section 2 describes Crypto-
based Handshake. Data transfer is presented in section 3. Section 4 presents
research issues. Section 5 summarize differences between TCP and QUIC.
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2 Crypto-based Handshake

To minimize connection establishment latency, QUIC relies on a combined cryp-
tographic and transport handshake. Each connection starts with a handshake
phase in which one client and one server establish a shared secret [11, section 5.3].

2.1 Handshake

TLS provides two handshake mode to QUIC [22, section 2.1]:

A full 1-RTT handshake : client is able to send Application Data after one
round trip and the server can immediately respond.

A 0-RTT handshake : client uses information previously learned about the
server and then is able to send Application Data immediately, but server can
accept or reject early data sent with this handshake mode [11, section 17.2.3]
(see section 2.1).

(a) 0-RTT handshake [11, Figure 4].

Client Server

Initial[0]: CRYPTO[CH]
0-RTT[0]: STREAM[0, "..."]

Initial[0]:CRYPTO[SH] ACK[0]
Handshake[0] CRYPTO[EE, FIN]
1-RTT[0]: STREAM[1, "..."] ACK[0]

Initial[1]: ACK[0]
Handshake[0]: CRYPTO[FIN], ACK[0]
1-RTT[1]: STREAM[0, "..."], ACK[0]

1-RTT[1]: STREAM[3, "..."], ACK[1]
Handshake[1]: ACK[0]

(b) 1-RTT handshake [11, Figure 3].

Client Server

Initial[0]:CRYPTO[CH]

Initial[0]:CRYPTO[SH] ACK[0]
Handshake[0]:CRYPTO[EE, CERT, CV, FIN]
1-RTT[0]: STREAM[1, "..."]

Initial[1]: ACK[0]
Handshake[0]: CRYPTO[FIN], ACK[0]
1-RTT[0]: STREAM[0, "..."], ACK[0]

1-RTT[1]: STREAM[3, "..."], ACK[0]
Handshake[1]: ACK[0]

Fig. 1: Comparison between 0-RTT and 1-RTT handshakes.

Figure 1a shows the QUIC handshake with 0-RTT. Figure 1b shows the
QUIC handshake with 1-RTT.

0-RTT connection establishment which recently contacted servers allows the
client to send application messages before receiving any messages from the server
(early data, see [11, section 17.2.3]).

However, 0-RTT lacks certain key security guarantees. In particular, there
is no protection against replay attacks in 0-RTT. To enable 0-RTT, QUIC uses
connection IDs [21, section 4.3] and also provides a way to terminate a connection
no longer desired.

2.2 CRYPTO typed frames

To transmit the cryptographic handshake, QUIC relies on CRYPTO typed frames
[11, section 19.6]. Each CRYPTO frame consists in a contiguous block of handshake
data and can be sent in all packet types with the exception of 0-RTT.
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As stated in draft IETF QUIC transport [11, section 19.6] the CRYPTO frame
contains 3 fields:

– Offset: A variable-length integer specifying the byte offset in the stream for
the data in this CRYPTO frame.

– Length: A variable-length integer specifying the length of the Crypto Data

field in this CRYPTO frame.

– Crypto Data: The cryptographic message data.

There is a separate flow of cryptographic handshake data in each encryption
level. Each of these starts at an offset of 0. This implies that each encryption
level is treated as a separate CRYPTO stream of data.

As opposite to TLS records used with TCP, in QUIC multiple CRYPTO frames
may appear in the same QUIC packet as long as they are associated with the
same encryption level [22, section 4].

2.3 Handshake TLS

TLS is a protocol which permits to establish a secure channel between two com-
municating entities. It simply expected from the underlying transport a reliable,
in-order data stream. TLS function in a client-server mode. It can allow the
following security objectives:

– Authentication: The server has to authenticate; the client may not.

– Confidentiality of exchanged data.

– Integrity of exchanged data.

As stated in [22, section 3], QUIC provides the confidentiality and integrity
of packets by using keys from TLS Handshake. As with TLS over TCP, once
TLS handshake data has been delivered to QUIC, it is QUIC’s responsibility
to deliver it reliably. Each chunk of data that is produced by TLS is associated
with the set of keys that TLS is currently using. If QUIC needs to retransmit
that data, it must use the same keys even if TLS has already updated to newer
keys [22, section 4].

TLS Handshake and Alert messages are carried directly over the QUIC trans-
port, which takes over the responsibilities of the TLS record layer, while TCP car-
ries TLS record inside TCP packets payload: unlike TLS over TCP, QUIC appli-
cations which want to send data do not send it through TLS application data

records [22, section 3].

There are two main interactions between the TLS and QUIC components
showed in figure 2:

– The TLS component sends and receives messages via the QUIC component,
with QUIC providing a reliable stream abstraction to TLS.

– The TLS component provides a series of updates to the QUIC component.
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Fig. 2: QUIC and TLS Interactions [22, Figure 4].
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As stated in [22, section 4.8], in TLS over TCP, the HelloRetryRequest fea-
ture can be used to correct a client’s incorrect KeyShare extension as well as for
a stateless round-trip check. From the perspective of QUIC, this just looks like
additional messages carried in the Initial encryption level.

The inclusion of the QUIC transport parameters extension ensures that hand-
shake and 1-RTT keys are not the same as those that might be produced by a
server running TLS over TCP. To avoid the possibility of cross-protocol key syn-
chronization, additional measures are provided to improve key separation [22,
section 9.5].

3 Data transfer

In HTTP/2, TCP is used as the transport protocol. Because TCP is reliable
and byte-ordered, when multiple streams are multiplexed within the same con-
nection, head-of-line blocking can appear. Head-of-line blocking in TCP is a
phenomenon that happens when all the streams of a connection have to wait
for a packet of a single stream that is currently lost. This phenomenon occurs
because streams are not independent of each other.

QUIC uses streams just as TCP but they are independent within the same
connection. They are identified by a unique numerical value within the connec-
tion: the STREAM ID. This value is a 62-bit integer that can not be reused during
the connection.

Within a QUIC connection, data is therefore sent in STREAM type frames.
This type of frame is composed of the STREAM ID, the length of the data sent,
the offset within the stream and the data itself. Thanks to the offset, the receiver
can reorder data if it does not arrive in order. If a packet is lost and STREAM

frames were sent within it, only the streams referred by the frames will only
have to wait for retransmission. The other streams which are not involved will
be able to continue receiving data.
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3.1 Loss Detection and Retransmission

As TCP does, QUIC implements an acknowledgment-based loss detection with
TCP’s Fast Retransmit, Early Retransmit, FACK, SACK loss recovery, and
RACK [10, section 5.1] but offers more detailed feedback information for loss
detection than TCP [4, page 74].

When a packet is received, once packet protection is removed and all the
frames in it have been processed, the receiver has to send an acknowledgment
to the sender containing the number of the packet received. By receiving it, the
sender can know that the packet sent was successfully received and no retrans-
mission is needed. A timer is settled by the sender when a packet is sent. It
prevents the sender to wait for an acknowledgment that never arrives. If an ar-
bitrary amount of time, declared during the handshake, expires, the sender will
declare the packet as lost.

In QUIC [10, section 2], an ack-eliciting is a packet that needs to be ac-
knowledged within the maximum delay established. A no ack-eliciting packet
is a packet containing ACK, PADDING or CONNECTION CLOSE frames. This kind of
packet does not need to be acknowledged within the maximum delay established.
Therefore, the acknowledgment will be sent only if an ACK frame has to be sent
for other reasons. For example, if an ack-eliciting packet arrives, the receiver
can acknowledge the packet which just arrives and the non-ack-eliciting packet
which arrived before.

Sending acknowledgments without control can increase the load between the
sender and the receiver. The receiver has to balance its sendings. An acknowl-
edgment of an ack-eliciting packet can be delayed as much as the maximum ACK
delay time is not exceeded. In some cases, it will wait until more packets arrive
to send a packet with more ACK frames rather than sending an acknowledg-
ment every time an ack-eliciting packet arrives. However, an acknowledgment
will have to be sent immediately in the following situations:

– An ack-eliciting packet is received out of order.
– A packet marked with the ECN-CE (Explicit Congestion Notification - Con-

gestion Experienced, see section 3.2) codepoint is received.

An acknowledgment can only be carried in a packet using the same protection
as the packet acknowledged. For example, an acknowledgment for an Application
data packet will only be carried in an Application data packet and not in a
Handshake packet.

An ack-eliciting packet will be determined as lost if:

– The packet is unacknowledged and was sent before and acknowledged packet.
– No acknowledgement for the packet has arrived in an arbitrary amount of

time, maximum acknowledgement delay, that will be established by the end-
point.

If a packet is determined as lost the packet itself is not retransmitted. The
information will be retransmitted in a new packet with new frames and only if
it is necessary: Data in STREAM frames will not have to be retransmitted if a
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RESET STREAM frame is received and data in CRYPTO frames will not have to be
retransmitted if the keys of the encryption level are discarded for example.

3.2 Congestion control

QUIC uses TCP’s NewReno [10, section 6.3] for congestion control, but unlike
TCP, the congestion window is specified in bytes rather than segments. The
mechanisms used in TCP to solve congestion problems are therefore implemented
in QUIC with a few improvements that should be noted.

Each QUIC connection begins with a slow start. During slow start, QUIC
increases the congestion window by the number of bytes acknowledged when each
acknowledgment is processed; and in case of loss, the threshold is lowered to half
of the last window and the slow start process is resumed. The slow start process
ends once the value of the congestion window exceeds the defined threshold, and
it switch to avoidance collision.

As in TCP, an additive increase multiplicative decrease (AIMD) is used in
this phase. It consists of increasing the congestion window by 1 each time until
the next loss. When a loss is detected, NewReno halves the congestion window
and sets the slow start threshold to the new congestion window.

The recovery period is slightly different from the TCP recovery definition,
which ends when the lost packet that caused the recovery is recognized. Because
QUIC does not retransmit lost packets, the end of recovery is achieved when a
new packet is sent. The loss of some packets such as Handshake, 0-RTT, and
1-RTT is ignored when their protection keys are not available when they arrive.

When persistent congestion is established, the sender’s congestion window
must be reduced to the minimum congestion window, which is similar to the
sender’s response on a Retransmission Timeout (RTO) in TCP after Tail Loss
Probes(TLP).

A sender can use the pipeACK method to determine if the congestion window
is sufficiently utilized. This underutilization may be due to pacing, which can
delay sending packets. However, as in TCP, a sender can implement alternate
mechanisms to update its congestion after periods of under-utilization.

QUIC can also use Explicit Congestion Notification (ECN) to signal network
congestion before packet loss occurs. ECN is an IP’s header field. It is only used
if both endpoints and the nodes existing in the path can read and understand
the ECN field. The use of ECN must be validated by the endpoints during
connection establishment and when migrating to another path. This validation,
when packets are sent to a host on a new path is done as follows:

– Setting the ECT(0) code point in the IP header of the first outgoing packets.
– The validation fails if all packets sent with the ECT(0) code point are lost.

If a receiver receives a QUIC packet without an ECT or CE code point in the
IP header it does not increase the number of ECNs. The QUIC signals which
control congestion are generic and are designed to support different algorithms.
The use of NewReno is not mandatory as another congestion algorithm exists
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such as Cubic. Moreover, endpoints can use different algorithms between each
other.

4 Research issues

Various implementations of IETF’s QUIC are already available [7]. One of the
first available implementations was picoQUIC. This project is a minimal imple-
mentation of QUIC aiming to provide feedback on the development of a QUIC
standard in the IETF QUIC Working Group [17]. It is actively tested against
other implementations.

Another of the older QUIC implementations is ngtcp2, a community project
developed in C. This project provides libraries for client and server roles, with
samples of HTTP/3 client and server [15]. quant is a NetApp’s implementation
providing libraries for both client and server sides [14], but it does not implement
HTTP/3.

Quiche is developed by Cloudflare. It provides a low-level API written in
Rust for processing QUIC packets. It follows the latest version of QUIC’s draft
[2]. There is a patch for NGINX implementing Cloudflare’s Quiche’s server role
with a Rust to C binding layer [3].

Recently, HTTP/3 support has been integrated into Curl, although the sup-
port is still experimental and needs to be enabled at build time [20]. There
are two implementations avaible: one using ngtcp2 libraries and the other using
quiche’s [19].

Neqo has been developed by Mozilla, it implements a client and a server
written in Rust. This project aims to be integrated into Gecko and to provide
QUIC support to Firefox in the future [13].

There is also active related work [8] as multipath extension [6], HTTP over
multicast quic [16], ns-3 module [5], or wireshark integration [9].

5 General Analysis

Some criteria have been chosen to recapitulate in a summary table, Table 1, the
differences between QUIC and TCP. These can be classified into two main cate-
gories: general and specified criteria related to data transfer and the handshake.

Firstly, the level of each protocol in the OSI model which marks the possibility
of updates in case of a security issue or functionality lack. They help the reader
to have a first impression of each protocol.

Secondly, specified criteria allow an understanding of how each protocol will
work in a practical case. The way they manage congestion, handle loss detection
and retransmission of packets during data transfer is mandatory for transport
protocols to understand the main differences.

TCP and QUIC both use Header compression with HTTP to transmit data
more efficiently, but HTTP/3 design does not allow the use of HPACK because it
would induce Head-of-line blocking. QPACK reuses core concepts from HPACK,
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but is redesigned to allow correctness in the presence of out-of-order delivery,
with flexibility for implementations to balance between resilience against head-
of-line blocking and optimal compression ratio [12, section 1].

Being able to do independent streams allows early data transmission and to
avoid Head-of-line blocking. The reduction of the RTT during the handshake is
significant on networks with high latency and helps reduce the load on operator
networks always overloaded.

Table 1: Comparison between TCP and QUIC for sending a secure web page

Criteria TCP (HTTP/2) QUIC (HTTP/3)

Layer (OSI model) 4 4.5

Ease of updates hard (kernel space) easy (user space)

Header compression HPACK QPACK

Congestion control algorithm NewReno

Loss detection using ACK packets and timer

Retransmission packets same as lost ones new packet with same data

Independent streams no yes

Early data transmission no if hosts already know each
other and are allowed to

6 Conclusion

This paper showed an overview of the QUIC transport protocol.
The comparison between QUIC and TLS over TCP for a basic web page

request showed that many round trips aren’t needed to assure speed and security.
HTTP/3 is basically HTTP/2 using QUIC transport protocol, it reduces the
number of round trips compared to HTTP over TLS/TCP.

The use of QUIC doesn’t compromise on security (early data responses used
in 0-RTT lacks certain key security guarantees).

The main functionalities of a connected transport protocol for assuring the
delivery are designed using already existing algorithms and protocols from TCP.

QUIC strength is that it’s based on UDP transport protocol and this gave
freedom of design: one of QUIC’s power is to reside in the user space so it is
more able to change.

There is an active community around the development of different implemen-
tations as shown in section 4. Network analysis tools like ns-3 or Wireshark are
the firsts to get QUIC support as they’re useful for development.
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