implementation de la fonction cree_socket

master
Flavien Haas 5 years ago
parent 74e8b8a04d
commit bd81cdaedf

@ -8,85 +8,89 @@
#define BUF_SIZE 500
int
main(int argc, char *argv[])
{
struct addrinfo hints;
struct addrinfo *result, *rp;
int sfd, s, j;
size_t len;
ssize_t nread;
char buf[BUF_SIZE];
struct addrinfo *result; // tableau des adresses réseaux des serveurs
int cree_socket(char* ip, char* port, struct addrinfo hints){
int s = getaddrinfo(ip, port, &hints, &result);
if (s != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
s = 1;
}
return s;
}
if (argc < 3) {
fprintf(stderr, "Usage: %s host port msg...\n", argv[0]);
exit(EXIT_FAILURE);
int main(int argc, char *argv[]) {
struct addrinfo hints;
struct addrinfo *rp;
int sfd, s, j;
size_t len;
ssize_t nread;
char buf[BUF_SIZE];
if (argc < 3) { // vérification du nombre d'arguments rentrés
fprintf(stderr, "mettre: %s ip port message\n", argv[0]);
exit(EXIT_FAILURE);
}
char* ip = argv[1];
char* port = argv[2];
char* message = argv[3]; // remplissage des varables a partir des arguments passés au programme
/* Obtain address(es) matching host/port */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = 0;
hints.ai_protocol = 0; /* Any protocol */
s = cree_socket(ip, port, hints); // création du socket
if(s == 1) {
exit(EXIT_FAILURE);
}
/* getaddrinfo () retourne une liste de structures d'adresses.
Essayez chaque adresse jusqu'à ce que nous ayons réussi à bind(2).
Si socket() (ou bind()) échoue, nous (fermons le socket et)
essayons l'adresse suivante */
for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (sfd == -1){
continue;
}
/* Obtain address(es) matching host/port */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = 0;
hints.ai_protocol = 0; /* Any protocol */
s = getaddrinfo(argv[1], argv[2], &hints, &result);
if (s != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);
if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1){
break; /* Success */
}
close(sfd);
}
/* getaddrinfo() returns a list of address structures.
Try each address until we successfully connect(2).
If socket(2) (or connect(2)) fails, we (close the socket
and) try the next address. */
if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not connect\n");
exit(EXIT_FAILURE);
}
for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,
rp->ai_protocol);
if (sfd == -1)
continue;
freeaddrinfo(result); /* No longer needed */
if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1)
break; /* Success */
/* Send remaining command-line arguments as separate
datagrams, and read responses from server */
close(sfd);
for (j = 3; j < argc; j++) {
len = strlen(argv[j]) + 1;
/* +1 for terminating null byte */
if (len + 1 > BUF_SIZE) {
fprintf(stderr, "Ignoring long message in argument %d\n", j);
continue;
}
if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not connect\n");
exit(EXIT_FAILURE);
if (write(sfd, argv[j], len) != len) {
fprintf(stderr, "partial/failed write\n");
exit(EXIT_FAILURE);
}
freeaddrinfo(result); /* No longer needed */
/* Send remaining command-line arguments as separate
datagrams, and read responses from server */
for (j = 3; j < argc; j++) {
len = strlen(argv[j]) + 1;
/* +1 for terminating null byte */
if (len + 1 > BUF_SIZE) {
fprintf(stderr,
"Ignoring long message in argument %d\n", j);
continue;
}
if (write(sfd, argv[j], len) != len) {
fprintf(stderr, "partial/failed write\n");
exit(EXIT_FAILURE);
}
nread = read(sfd, buf, BUF_SIZE);
if (nread == -1) {
perror("read");
exit(EXIT_FAILURE);
}
printf("Received %ld bytes: %s\n", (long) nread, buf);
nread = read(sfd, buf, BUF_SIZE);
if (nread == -1) {
perror("read");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
printf("Received %ld bytes: %s\n", (long) nread, buf);
}
exit(EXIT_SUCCESS);
}

@ -10,10 +10,8 @@
struct addrinfo *result; // tableau des adresses réseaux des clients
// to do : traite_connexion
int cree_socket(struct addrinfo hints, char* ip){
int s = getaddrinfo(NULL, ip, &hints, &result);
int cree_socket(struct addrinfo hints, char* port){
int s = getaddrinfo(NULL, port, &hints, &result);
if (s != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
s = 1;
@ -22,7 +20,7 @@ int cree_socket(struct addrinfo hints, char* ip){
}
void con_client(int *sfd){
struct addrinfo *rp; // structure de l'adresse du client
struct addrinfo *rp; // structure de l'adresse du client
/* getaddrinfo () retourne une liste de structures d'adresses.
Essayez chaque adresse jusqu'à ce que nous ayons réussi à bind(2).
Si socket() (ou bind()) échoue, nous (fermons le socket et)
@ -83,14 +81,14 @@ int main(int argc, char *argv[]){
exit(EXIT_FAILURE);
}
char* ip = argv[1]; // récupération de l'ip passée en paramètre du programme
char* port = argv[1]; // récupération du port passée en paramètre du programme
// remplissage de la structure hints contenants la configuration réseau du serveur
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET6; // utilisation du serveur sur IPv6 (AF_UNSPEC pour IPv4/6)
hints.ai_family = AF_UNSPEC; // utilisation du serveur sur IPv4/v6 (AF_INET/AF_INET6)
hints.ai_socktype = SOCK_DGRAM; // socket en mode datagramme
s = cree_socket(hints, ip); // création du socket
s = cree_socket(hints, port); // création du socket
if(s == 1) {
exit(EXIT_FAILURE);
}

Loading…
Cancel
Save